• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Wentong ZOU, Zhi CAO. Effects of Combined Copper and Zinc Stress on the Seed Germination, Seedling Growth and Cotyledon Physiological Metabolism of Chinese Flowering Cabbage[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(4): 632-639. DOI: 10.12101/j.issn.1004-390X(n).201704027
Citation: Wentong ZOU, Zhi CAO. Effects of Combined Copper and Zinc Stress on the Seed Germination, Seedling Growth and Cotyledon Physiological Metabolism of Chinese Flowering Cabbage[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(4): 632-639. DOI: 10.12101/j.issn.1004-390X(n).201704027

Effects of Combined Copper and Zinc Stress on the Seed Germination, Seedling Growth and Cotyledon Physiological Metabolism of Chinese Flowering Cabbage

More Information
  • Received Date: April 13, 2017
  • Revised Date: July 14, 2017
  • Available Online: August 28, 2018
  • Published Date: June 30, 2018
  • Purpose To study the effect of combined copper and zinc stress on the seed germination, seedling growth and cotyledon physiological metabolism of Chinese flowering cabbage to explore copper and zinc concentration scope of Chinese flowering cabbage’ growth.
    Method By seed sprouting test, taking Chinese flowering cabbage as test material and combined copper and zinc as a variable, the effects of combined copper and zinc stress(eight treatments of combined Cu2+ and Zn2+ were 0 mmol/L + 0 mmol/L, 0.20 mmol/L + 0.17 mmol/L, 0.40 mmol/L + 0.34 mmol/L, 0.80 mmol/L + 0.68 mmol/L, 1.20 mmol/L + 1.02 mmol/L, 1.60 mmol/L + 1.36 mmol/L, 2.00 mmol/L + 1.70 mmol/L and 2.40 mmol/L + 2.04 mmol/L) on seed germination and seedling growth of Chinese flowering cabbage were studied.
    Results With the aggravation of combined copper and zinc stress, the SOD and CAT activities, contents of soluble sugar, soluble protein and proline of Chinese flowering cabbage cotyledon decreased after initial increase, which reached the peak value of 30.76 U/(g·min), 327.81 U/(g·min), 11.24 nmol/g, 15.46 mg/g and 452.96 μg/g with treatment T4. The MDA content and O2 producing rate increased after initial decrease, which reached the bottom of 15.17 nmol/g and 17.86 nmol/(g·min) with treatment 4 and the POD activity and the relative conductivity increased gradually. The germination rate, seedling height, the longest root, fresh weight per plant and photosynthetic pigment contents of cotyledon decreased gradually, which reached the peak value of 68.00%, 1.64 cm, 2.99 cm, 18.32 mg, 0.79 mg/g, 0.20 mg/g, 0.99 mg/g, 0.19 mg/g with treatment T1(CK).
    Conclusion Combined copper and zinc stress could stop the seed germination and seedling growth of Chinese flowering cabbage, and the tolerance of Chinese flowering cabbage to lower copper and zinc (0.80 mmol/L Cu2+ + 0.68 mmol/L Zn2+) in adversity was observed.
  • [1]
    沈羽. 渐尖毛蕨对铜锌复合胁迫的生理响应[D]. 南京: 南京林业大学, 2014.
    [2]
    GUO L, CUTRIGHT T J. Remediation of AMD contaminated soil by two types of reeds[J]. International Journal of Phytoremediation, 2015, 17(4): 391. DOI: 10.1080/15226514.2014.910170.
    [3]
    HUANG Z N, TANG Y K, ZHANG K X, et al. Environmental risk assessment of manganese and its associated heavy metals in a stream impacted by manganese mining in South China[J]. Human and Ecological Risk Assessment: An International Journal, 2016, 2(9): 3. DOI: 10.1080/10807039.2016.1169915.
    [4]
    LIAO J B, WEN Z W, RU X, et al. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: public health implications in Guangdong Province, China[J]. Ecotoxicology and Environmental Safety, 2016, 124: 460. DOI: 10.1016/j.ecoenv.2015.11.023.
    [5]
    钱海燕, 王兴祥, 蒋佩兰, 等. 黑麦草连茬对铜、锌污染土壤的耐性及其修复作用[J]. 江西农业大学学报, 2004, 26(5): 801. DOI: 10.13836/j.jjau.2004183
    [6]
    王广林, 张金池, 王丽, 等. 铜、锌胁迫对丁香蓼生理指标的影响[J]. 南京林业大学学报, 2009, 33(4): 43. DOI: 10.3969/j.issn.1000-2006.2009.04.009
    [7]
    王丽红, 赵艳晓, 周青. 铜、锌对3种常见乔木抗氧化指标的复合影响[J]. 城市环境与城市生态, 2013, 26(6): 6
    [8]
    朱志国, 周守标. 铜锌复合胁迫对芦竹生理生化特性、重金属富集和土壤酶活性的影响[J]. 水土保持学报, 2014, 28(1): 279. DOI: 10.13870/j.cnki.stbcxb.2014.01.054
    [9]
    韩文炎, 许允文. 铜与锌对茶树生育特性及生理代谢的影响[J]. 茶叶科学, 1996, 16(2): 99. DOI: 10.13305/j.cnki.jts.1996.02.005
    [10]
    申晓慧, 郭伟, 冯鹏, 等. 铜-锌复合胁迫对凤仙花萌发及幼苗生长的影响[J]. 农业灾害研究, 2014, 4(5): 16
    [11]
    ROSSI G, FIGLIOLIA A, SOCCIARELLI S, et al. Capability of Brassica napus to accumulate cadmium, zinc and copper from soil[J]. Acta Biotechnologica, 2002(1-2): 133. DOI: 10.1002/1521-3846(200205)22:1/2.
    [12]
    NAVARI-IZZO F, QUARTACCI M F. Phytoremediation of metals: tolerance mechanisms against oxidative stress[J]. Minerva Biotecnologica, 2001, 13(2): 73.
    [13]
    RÍO CELESTINO M D, FONT R, FERNÁNDEZ-MARTÍNEZ J, et al. Field trials of Brassica carinata and Brassica Juncea in polluted soils of the Guadiamar river area[J]. Fresenius Environmental Bulletin, 2000, 9(5): 328.
    [14]
    杨志新, 刘树庆. 土壤重金属复合污染对油菜生长的影响[J]. 河北农业大学学报, 2000, 23(3): 27. DOI: 10.3969/j.issn.1000-1573.2000.03.008
    [15]
    邹文桐. 铅铜复合胁迫对芥菜子叶抗性的影响[J]. 西北农林科技大学学报, 2013, 41(11): 192. DOI: 10.13207/j.cnki.jnwafu.2013.11.023
    [16]
    郑光华. 种子活力的原理及其应用[M]// 北京植物生理学会. 植物生理生化进展(第四期). 北京: 科学出版社, 1986.
    [17]
    邹文桐. 维生素C浸种对铅胁迫下宽杆芥菜毒害效应的影响[J]. 种子, 2011, 30(10): 95
    [18]
    张志良, 瞿伟菁. 植物生理学实验指导[M]. 3版. 北京: 高等教育出版社, 2003.
    [19]
    张芬琴, 金自学. 两种豆科作物的种子萌发对Cd2+处理的不同响应[J]. 农业环境科学学报, 2003, 22(6): 660. DOI: 10.16590/j.cnki.1001-4705.2011.10.041
    [20]
    李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
    [21]
    朱广廉. 植物生理学实验[M]. 北京: 北京大学出版社, 1990.
    [22]
    西北农业大学植物生理教研组. 植物生理学实验指导[M]. 西安: 陕西科学出版社, 1987.
    [23]
    张志良. 植物生理学实验指导[M]. 北京: 高等教育出版社, 1990.
    [24]
    王晶英. 植物生理生化实验技术与原理[M]. 哈尔滨: 东北林业大学出版社, 2003.
    [25]
    王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学通讯, 1990, 31(6): 57. DOI: 10.13592/j.cnki.ppj.1990.06.031
    [26]
    CHEN Y X, HE Y F, LUO Y M, et al. Physiological mechanism of plant roots exposed to cadmium[J]. Chemosphere, 2003, 50(6): 789. DOI: 10.1016/S0045-6535(02)00220-5.
    [27]
    王俊, 郭颖, 吴蕊, 等. 不同种植年限和施肥量对日光温室土壤锌累积的影响[J]. 农业环境科学学报, 2009, 28(1): 92
    [28]
    甄泉, 严密, 杨红飞, 等. 铜污染对野艾蒿生长发育的胁迫及伤害[J]. 应用生态学报, 2006, 17(8): 1505. DOI: 10.13287/j.1001-9332.2006.0298
    [29]
    赵玉红, 蒙祖庆, 牛歆雨, 等. 铜锌胁迫对珠芽蓼珠芽萌发及生理生化特性的影响[J]. 草地学报, 2014, 22(1): 118. DOI: 10.11733/j.issn.1007-0435.2014.01.018
    [30]
    PANLA K P, THOMPSON J E. Evidence for the accumulation of peroxidized lipids in membranes of senescing cotyledons[J]. Plant Physiology, 1984, 75(4): 1152. DOI: 10.1104/pp.75.4.1152.
    [31]
    杨红飞, 王友保, 李建龙. 铜、锌污染对水稻土中油菜(Brassica chinensis L.)生长的影响及累积效应研究[J]. 生态环境学报, 2011, 20(10): 1475. DOI: 10.16258/j.cnki.1674-5906.2011.10.021
    [32]
    孙赛初, 王焕校, 李启任. 水生维管束植物受镉污染后的生理生化变化及受害机制初探[J]. 植物生理学报, 1985, 11(2): 117
    [33]
    李淑艳, 郭微. Cu2+、Zn2+胁迫对黄瓜种子萌发及幼苗生长的影响[J]. 中国种业, 2006(1): 34
    [34]
    陈柳君, 冯海峰, 朱雪梅, 等. 铜锌复合污染对铜富集植物大聚藻抗氧化酶活性的影响[J]. 西北植物学报, 2014, 34(10): 2058. DOI: 10.7606/j.issn.1000-4025.2014.10.2056
    [35]
    孙天国, 沙伟, 刘岩. 复合重金属胁迫对两种藓类植物生理特性的影响[J]. 生态学报, 2010, 30(9): 2334
    [36]
    袁敏, 铁柏清, 唐美珍. 重金属单一污染对龙须草叶绿素含量和抗氧化酶系统的影响[J]. 土壤通报, 2005, 36(6): 930
    [37]
    黄五星, 高境清, 黄宇, 等. 商陆对镉锌铜胁迫的生理响应与金属积累特性[J]. 环境科学与技术, 2010, 33(1): 78. DOI: 10.3969/j.issn.1003-6504.2010.01.019
    [38]
    殷恒霞, 李霞, 米琴, 等. 镉、锌、铜胁迫对向日葵早期幼苗生长的影响[J]. 植物遗传资源学报, 2009, 10(2): 293. DOI: 10.13430/j.cnki.jpgr.2009.02.019

Catalog

    Article views (3151) PDF downloads (33) Cited by()